[1]刘帅,陈玥希,孙辉*,等. 西南亚高山-高山海拔梯度上森林土壤水溶性有机碳时间动态[J].西北林学院学报,2015,30(01):33-38.[doi:doi:10.3969/j.issn.1001-7461.2015.01.06]
 LIU Shuai,CHEN Yue-xi,SUN Hui*,et al. Temporal Dynamics of DOC in Forest Soil along an Elevational Gradient of Subalpine-alpine in the Southwestern China[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2015,30(01):33-38.[doi:doi:10.3969/j.issn.1001-7461.2015.01.06]
点击复制

 西南亚高山-高山海拔梯度上森林土壤水溶性有机碳时间动态()
分享到:

《西北林学院学报》[ISSN:1001-7461/CN:61-1202/S]

卷:
第30卷
期数:
2015年01期
页码:
33-38
栏目:
出版日期:
2015-01-31

文章信息/Info

Title:
 Temporal Dynamics of DOC in Forest Soil along an Elevational Gradient of Subalpine-alpine in the Southwestern China
文章编号:
1001-7461(2015)01-0033-06
作者:
 刘帅陈玥希孙辉*王林
 (四川大学 环境科学与工程系, 四川 成都 610065)
Author(s):
 LIU Shuai CHEN Yue-xi SUN Hui* WANG Lin
 (Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China)
关键词:
 土壤溶解性有机碳高寒土壤海拔梯度活性有机碳时间动态
Keywords:
 dissolved organic carbon alpine soil altitudinal gradient soil labile carbon temporal dynamics
分类号:
S714.2
DOI:
doi:10.3969/j.issn.1001-7461.2015.01.06
文献标志码:
A
摘要:
 利用均质化土壤重装的土柱,在川西亚高山-高山同一坡面的5个海拔高度(3 250、3 438、3 672、3 852 m和4 098 m)进行原位培养,定期采样测定土壤0~10 cm和10~20 cm水溶性有机碳(DOC)含量,揭示高寒土壤水溶性有机碳时间动态及受海拔高度的影响规律。结果表明,川西亚高山-高山森林土壤DOC主要在每年11月至次年5月的低温期间积累,在低温末期(5月)含量达到最高,土壤DOC含量在5月以后的温暖季节因消耗而逐步降低;在同一采样时间土壤DOC含量均随着海拔升高而增加。因此,因全球变暖而引起的高寒土壤低温期间缩短,将减少土壤DOC累积的时间,而可能使土壤中DOC含量降低;同时低温期缩短将可能使高寒土壤DOC消耗期延长,从而使高寒土壤碳成为一个潜在的碳源。
Abstract:
 Change patterns of dissolved organic carbon (DOC) along elevation gradients are important to elucidate responses of alpine cold soil carbon and its labile fractions to global change and soil warming. Repacked columns of homogenized alpine topsoil (0-20 cm) were incubated on-site at different altitudes (3 250, 3 438, 3 672, 3 852, and 4 098 m) along an altitudinal gradient. Incubated soil columns were sampled in September, November, March, May and July, respectively, and DOC contents in 0-10 cm and 10-20 cm in each column were respectively analyzed to determine seasonal variability in soil depth and altitude. The results showed that soil DOC was accumulated during the cold season and reached the peak in May, while decomposed in growth season; at the same sampling time, the contents of DOC tended to increase with altitude, soil DOC content at high-altitude zone was higher than at lower-altitude zones. Therefore, for subalpine soil, shrinkage of cold season induced by climate warming may extend the period of DOC depletion. Meanwhile, soil warming and contraction of freezing period could decrease the accumulations of soil DOC and enhance emissions of CO2, indicating that alpine cold soil carbon pool would become a potential carbon source in the context of soil warming.

参考文献/References:

 [1]GUGGENBERGER G, ZECH W. Dissolved organic carbon in forest floor leachates: simple degradation products or humic substances?[J]. Science of the Total Environment, 1994, 152(1): 37-47.
[2]KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165(4): 277-304.
[3]MOORE T R, DALVA M. Some controls on the release of dissolved organic carbon by plant tissues and soils[J]. Soil Science, 2001, 166(1): 38-47.
[4]AMON R M W, BENNER R. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1783-1792. 
[5]BENGTSON P, BENGTSSON G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures[J]. Ecology Letters, 2007, 10(9): 783-790.
[6]KAISER K, KALBITZ K. Cycling downwards–dissolved organic matter in soils[J]. Soil Biology and Biochemistry, 2012, 52: 29-32.
[7]STANLEY E H, POWERS S M, LOTTIG N R, et al. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management[J]. Freshwater Biology, 2012, 57(Supp1): 26-42. 
[8]KOTHAWALA D N, STEDMON C A, MLLER R A, et al. Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey[J]. Global Change Biology, 2014,4:1-14.
[9]HAYNES R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J]. Soil Biology and Biochemistry, 2000, 32(2): 211-219.
[10]CHANTIGNY M H. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices[J]. Geoderma, 2003, 113(3): 357-380.
[11]WU T, ZHAO L, LI R, et al. Recent ground surface warming and its effects on permafrost on the central Qinghai‐Tibet Plateau[J]. International Journal of Climatology, 2013, 33(4): 920-930.
[12]秦纪洪, 武艳镯, 孙辉,等. 低温季节西南亚高山森林土壤轻组分有机碳动态[J].土壤, 2012, 44(3): 413-420.
QIN J H, WU Y Z, SUN H. Dynamics of light fraction organic carbon in subalpine forest soil in southwestern China during cold season [J]. Soil, 2012, 44(3): 413-420.(in Chinese)
[13]HAGEDORN F, MULDER J, JANDL R. Mountain soils under a changing climate and land-use[J]. Biogeochemistry, 2010, 97(1): 1-5.
[14]李克让, 王绍强, 曹明奎. 中国植被与土壤碳储量[J]. 中国科学, D辑: 地球科学,2003, 33: 72-80.
[15]王开运. 亚高山森林群落生态系统过程[M]. 成都: 四川科技出版社,2004.
[16]秦纪洪, 王琴, 孙辉. 亚高山与高山表层矿质土壤中有机碳及活性组分沿海拔梯度的变化[J]. 生态学报, 2013, 33(18): 5858-5864.
QIN J H, WANG Q, SUN H. Changes of organic carbon and its labile fractions in topsoil with altitude in subalpine-alpine area of southwestern China[J]. Acta Ecologica Sinica,2013,33(18): 5858-5864. (in Chinese)
[17]ANDREASSON F, BERGKVIST B, BTH E. Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech forest floors[J]. Soil Biology and Biochemistry, 2009, 41(8): 1652-1658.
[18]RUI Y C, WANG S P, XU Z H., et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China[J].Journal of Siols and Sediments, 2011,11(6):903-914.
[19]李沙, 刘冬梅, 孙辉. 西南亚高山森林土壤表层温度变化特征及拟合模型[J]. 西北林学院学报, 2013, 28(3): 34-39.
LI S, LIU D M, SUN H. Annual temperature dynamic characteristics and modeling of subalpine forest topsoil in Southwestern China [J]. Journal of Northwest Forestry University, 2013, 28(03) : 34-39.(in Chinese)
[20]JONES D L, WILLETT V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil [J]. Soil Biology & Biochemistry, 2006, 38: 991-999.
[21]孙辉,秦纪洪,吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤,2008,40(4):505-509.
SUN H, QIN J Z, WU Y. Freeze-Thaw cycles and their impacts on ecological process: a review [J]. Soil, 2008, 40(4):505-509. (in Chinese)
[22]LIPSON D A, SCHADT C W, SCHMIDT S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt[J]. Microbial Ecology, 2002, 43(3): 307-314.
[23]FREPPAZ M, WILLIAMS B L, EDWARDS A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability [J]. Applied Soil Ecology, 2007, 35(1): 247-255.
[24]HAYNES R J, FRANCIS G S. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions[J]. Journal of Soil Science, 1993, 44(4): 665-675. 
[25]HERRMANN A, WITTER E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34(10): 1495-1505.
[26]GROGAN P, MICHELSEN A, AMBUS P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry, 2004, 36(4): 641-654.
[27]黄雪菊,王琴,孙辉,李沙. 不同地表覆盖下低温季节对西南亚高山土壤微生物量碳动态的影响[J]. 山地学报,2012,32(5):543-549.
HUANG X J,WANG Q,SUN H,et al. Soil biomass carbon dynamics of subalpine forest in western Sichuan Province during the cold season[J]. Jouranl of Mountain Science, 2012,32(5):543-549. (in Chinese)
[28]FIERER N, ALLEN A S, SCHIMEL J P, et al. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons[J]. Global Change Biology, 2003, 9(9): 1322-1332.
[29]伍星,沈珍瑶. 冻融作用对土壤温室气体产生与排放的影响[J]. 生态学杂志,2010,29(7):1432-1439.
WU X, SHEN Z Y. Effects of freezing-thawing cycle on greenhouse gases production and emission form soil:A review[J]. Chinese Journal of Ecology, 2010, 29(7):1432-1439. (in Chinese)
[30]HARRISON A F, TAYLOR K, SCOTT A, et al. Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments[J]. Global Change Biology, 2008, 14(3): 687-702.
[31]王琴,范曾丽,孙辉,等. 低温季节西南亚高山森林土壤可溶性有机碳动态[J]. 四川农业大学学报,2012,30(1):18-23.
WANG Q, FAN Z L, SUN H, et al. Dynamics of dissolved organic carbon in subalpine forest soil in southwestern China during the cold season[J]. Journal of Sichuan Agriculture University , 2012, 30(1):18-23. (in Chinese)
[32]GIELEN B, NEIRYNCK J, LUYSSAERT S, et al. The importance of dissolved organic carbon fluxes for the carbon balance of a temperate scots pine forest[J]. Agricultural and Forest Meteorology, 2011, 151(3): 270-278.
[33]ZHAO M, ZHOU J, KALBITZ K. Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China[J]. European Journal of Soil Biology, 2008, 44(2): 158-165.
[34]KIRSCHBAUM M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage [J]. Soil Biology and Biochemistry, 1995, 27:753-760.
[35]XU M, QI Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest[J]. Global Biogeochemical Cycles, 2001, 15(3): 687-696.
[36]秦纪洪, 张文宣, 王琴, 等. 西南亚高山森林土壤酶的温度敏感性特征[J]. 土壤学报, 2013, 50(6): 174-178.
QIN J H, ZHANG W X, SUN H, et al. Temperature sensitivity of enzyme activity in subalpine forest soil in southwest China [J]. Acta Pedologica Sinica, 2013, 50(6): 174-178. (in Chinese)

相似文献/References:

[1]李亚藏,梁彦兰,王庆成. 铅对山梨和山荆子光合作用和叶绿素荧光特性的影响[J].西北林学院学报,2012,27(05):21.
 LI Ya-cang,LIANG Yan-lan,WANG Qing-cheng. Influence of Pb on Photosynthesis and Chlorophyll Fluorescence Characteristics in Pyrus ussuriensis and Malus baccata [J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2012,27(01):21.
[2]张小咏,李佳,杨艳昭,等. 基于SWAT模型的长江源区径流模拟[J].西北林学院学报,2012,27(05):38.
 ZHANG Xiao-yong,LI Jia,YANG Yan-zhao,et al. Runoff Simulation of the Catchment of the Headwaters of the Yangtze River Based on SWAT Model[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2012,27(01):38.
[3]杨红旗,陈广辉,王金林. PVAc改性酚醛树脂制备铝木复合材料研究[J].西北林学院学报,2013,28(01):170.[doi:10.3969/j.issn.1001-7461.2013.01.34]
 YANG Hong-qi,CHEN Guang-hui,WANG Jin-lin. PF Adhesive Modified by PVAc for Manufacturing Technology of Decorative Fiberboard with Aluminum Foils[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):170.[doi:10.3969/j.issn.1001-7461.2013.01.34]
[4]江涛,李秀荣,谢延军,等. 微波预处理对巨尾桉木材渗透性的影响[J].西北林学院学报,2013,28(01):174.[doi:10.3969/j.issn.1001-7461.2013.01.35]
 JIANG Tao,LI Xiu-rong,XIE Yan-jun,et al. Effects of Microwave Pretreatment on the Permeability of Eucalyptus grandis×Eucalyptus urophylla[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):174.[doi:10.3969/j.issn.1001-7461.2013.01.35]
[5]牛晓霆,王逢瑚,曹新民. 明清家具匠师原木下料的工艺原则及措施[J].西北林学院学报,2013,28(01):178.[doi:10.3969/j.issn.1001-7461.2013.01.36]
 NIU Xiao-ting,WANG Feng-hu,CAO Xin-min. Techniques and Principles of Log Cuttings of Furniture Makers in Ming and Qing Dynasties[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):178.[doi:10.3969/j.issn.1001-7461.2013.01.36]
[6]吕金阳,覃卓凯,舒辉,等. 银杉木材构造美学价值[J].西北林学院学报,2013,28(01):183.[doi:10.3969/j.issn.1001-7461.2013.01.37]
 LV Jin-yang,QIN Zhuo-kai,SHU Hui,et al. Esthetical Values in Wood Structure of Cathaya argyrophylla[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):183.[doi:10.3969/j.issn.1001-7461.2013.01.37]
[7]杨艳红,张海敏,孙景荣. 基于传统文化视角的现代家具设计探析[J].西北林学院学报,2013,28(01):188.[doi:10.3969/j.issn.1001-7461.2013.01.38]
 YANG Yan-hong,ZHANG Hai-min,SUN Jing-rong. Study of Modern Furniture Design Based on Traditional Culture[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):188.[doi:10.3969/j.issn.1001-7461.2013.01.38]
[8]黄圣游,叶喜. 新中式家具“中式”传统的界定[J].西北林学院学报,2013,28(01):192.[doi:10.3969/j.issn.1001-7461.2013.01.39]
 HUANG Sheng-You,YE Xi. Definition of Traditional Element in New Chinese Style Furniture[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):192.[doi:10.3969/j.issn.1001-7461.2013.01.39]
[9]韩维生,赵明磊,王宏斌. 基于阈限理论的设计尺度体系[J].西北林学院学报,2013,28(01):197.[doi:10.3969/j.issn.1001-7461.2013.01.40]
 HAN Wei-sheng,ZHAO Ming-lei,WANG Hong-bin. Design Scale System Based on Threshold Theory[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):197.[doi:10.3969/j.issn.1001-7461.2013.01.40]
[10]宋杰,侯建军,申黎明. 按摩椅按摩头包覆层对按摩舒适性的影响[J].西北林学院学报,2013,28(01):202.[doi:10.3969/j.issn.1001-7461.2013.01.41]
 SONG Jie,HOU Jian-jun,SHEN Li-ming. Influence of Massager Coat Layer of Massage Chairs on the Degree of Comfort[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(01):202.[doi:10.3969/j.issn.1001-7461.2013.01.41]

备注/Memo

备注/Memo:
 收稿日期:2014-04-08 修回日期:2014-04-28
基金项目:国家自然科学基金项目(41271094),(40871124);四川大学大学生创新训练计划项目(20141170),(20141198)。
作者简介:刘帅,女,学士,研究方向:环境生态学。E-mail: ls741056458@gmail.com
*通信作者:孙辉,男,博士,副研究员,研究方向:土壤生态学与全球变化的区域响应。E-mail:sunhuifiles@gmail.com
更新日期/Last Update: