[1]王涛,唐颂豪,何梅,等. 热激蛋白与植物耐热性关系的研究进展[J].西北林学院学报,2014,29(06):72-79.[doi:doi:10.3969/j.issn.1001-7461.2014.06.14]
 WANG Tao,TANG Song-hao,HE Mei,et al. Advances in Relationship between Heat Shock Proteins and Thermo-tolerance of Plants[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2014,29(06):72-79.[doi:doi:10.3969/j.issn.1001-7461.2014.06.14]
点击复制

 热激蛋白与植物耐热性关系的研究进展()
分享到:

《西北林学院学报》[ISSN:1001-7461/CN:61-1202/S]

卷:
第29卷
期数:
2014年06期
页码:
72-79
栏目:
出版日期:
2014-11-30

文章信息/Info

Title:
 Advances in Relationship between Heat Shock Proteins and Thermo-tolerance of Plants
文章编号:
1001-7461(2014)06-0072-08
作者:
 王涛唐颂豪何梅谢寅峰*张往祥
 (南京林业大学 生物与环境学院,江苏 南京 210037)
Author(s):
 WANG Tao TANG Song-hao HE Mei XIE Yin-feng* ZHANG Wang-xiang
 (College of Biology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China)
关键词:
 高温胁迫耐热性热激蛋白
Keywords:
 heat-stress thermo-tolerance heat shock protein
分类号:
S718.43
DOI:
doi:10.3969/j.issn.1001-7461.2014.06.14
文献标志码:
A
摘要:
 热激蛋白是一类响应逆境胁迫并且大量表达在生物体中的蛋白质。植物热激蛋白在减缓高温胁迫引起的伤害和提高植物对高温胁迫的耐受性中起着关键作用。近年来,植物热激蛋白在高温胁迫下的产生、分类与定位,热激蛋白及基因表达的调控以及热激蛋白的生物学功能等方面的研究取得较大进展,讨论了今后热激蛋白与植物耐热性关系的研究重点。
Abstract:
 Heat shock proteins (HSPs) are a series of proteins which are significantly expressed in organisms when they respond to reverse environment stress. The HSPs of plants play a key role in relieving the injury caused by heat stress and improving the thermo-tolerance. This paper discussed the production, classification and location of HSPs of plants under heat stress, the regulation of expression of HSPs with their genes, the biological functions of HSPs and summarized the research advances in recent years. In addition, the key research direction of the relationship between HSPs and thermo-tolerance of plants in the future was also put forward.72

参考文献/References:

 [1]YOUNG L W, WILEN R W, BONHAM-SMITH P C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production[J]. Journal of Experimental Botany, 2004, 55(396): 485-495.
[2]PAVLI O I, GHIKAS D V, KATSIOTIS A, et al. Differential expression of heat shock protein genes in sorghum (Sorghum bicolor L.) genotypes under heat stress[J]. Australian Journal of Crop Science, 2011, 5(5): 511-515.
[3]CHANKOVA S, MITROVSKA Z, MITEVA D, et al. Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in chlorella species from contrasting habitats[J]. Gene, 2013, 516(1): 184-189.
[4]UL HAQ N, RAZA S, LUTHE D S, et al. A dual role for the chloroplast small heat shock protein of Chenopodium album including protection from both heat and metal stress[J]. Plant Molecular Biology Reporter, 2013, 31(2): 398-408.
[5]SHARMA-NATU P, SUMESH K V, GHILDIYAL M C. Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat[J]. Journal of Agronomy & Crop Science, 2010, 196(1): 76-80.
[6]GURLEY W B. HSP101: a key component for the acquisition of thermo-tolerance in plants[J]. The Plant Cell, 2000, 12(4): 457-460.
[7]WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199-223.
[8]HELM K W, LAFEYETTE P R, NAGAO R T, et al. Localization of small heat shock protein to higher plant endomembrane system[J]. Molecular and Cellular Biology, 1993, 13(1): 238-247.
[9]SCHIRMER E C, LINDQUIST S, VIERLING E. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast[J]. Plant Cell, 1994, 6(12): 1899-1909.
[10]LEE Y J, NAGAO R T, KEY J L. A soybean 101kD a heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance[J]. The Plant Cell, 1994, 6(12): 1889-1897.
[11]YABE N, TAKAHASHI T, KOMEDA Y. Analysis of tissue-specific expression of Arabidopsis thaliana HSP90 family gene HSP81[J]. Plant Cell Physiol., 1994, 35(8): 1207-1219.
[12]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes: genomic organization and expression profiling under stress and development[J]. BMC Genomics, 2009 (10):393.
[13]SIDDIQUE M, GERNHARD S, VON KOSKULL-DORING P, et al. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties[J]. Cell Stress & Chaperones, 2008, 13(2): 183-197.
[14]KIM K H, ALAM I, KIM Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnol Lett, 2012, 34(2): 371-377.
[15]MAMEDOV T G, SHONO M. Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein[J]. Journal of Plant Research, 2008, 121(2): 235-243.
[16]DAFNY-YELIN M, TZFIRA T, VAINSTEIN A, et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(4): 363-373.
[17]OUYANG Y D, CHEN J J, XIE W B, et al. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice[J]. Plant Molecular Biology, 2009, 70(3): 341-357.
[18]YOUNG T E, LING J, GEISLER-LEE C J, et al. Developmental and thermal regulation of the maize heat shock protein, HSP101[J]. Plant Physiol., 2001, 127(3): 777-791.
[19]ASSAB E, RAMPINO P, MITA G, et al. Heat shock response in olive (Olea europaea L.) twigs: identification and analysis of a cDNA coding a class I small heat shock protein[J]. Plant Biosystems, 2011, 145(2): 419-425.
[20]DAVID J G, EDITH T. Heat-shock response of Pinus and Picea seedlings[J]. Tree Physiology, 1994, 14(1): 103-110.
[21]KOPPENAAL R S, COLOMBO S J, BLUMWALD E. Acquired thermotolerance of jack pine, white spruce and black spruce seedlings[J]. Tree Physology, 1991, 8(1): 83-91.
[22]TISSERES A A, MITCHELL H K, TRACY U M. Protein synthesis in salivary glands of drosophila melanogaster:Relation to chromosome puffs [J]. Journal of Molecular Biology, 1974, 84(3): 393-398.
[23]Pelham H R B. Speculatons on the fumctions of the major heat shock and glucose-regulated proteins[J]. Cell, 1986,46(7): 959-961.
[24]NISHIZAWA A, YABUTA Y, YOSHIDA E, et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. Plant Journal, 2006, 48(4): 535-547.
[25]YUKI S, ATSUSHI S, MASARU K, et al. Muscle develops a specific form of small heat shock protein complex composed of MKBP HSPB2 and HSPB3 during myogenic differentiation[J]. J. Biol. Chem., 2000, 275(2): 1095-1140.
[26]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences, 2004, 29(4): 471-487.
[27]NOVER L, BHARTI K, DORING P, et al. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3): 177-189.
[28]MISHRA S K, TRIPP J, WINKELHAUS S, et al. In the complex family of heat stress transcription factors, HSfA1 has a unique role as master regulator of thermotolerance in tomato[J]. Genes & Development, 2002, 16(12): 1555-1567.
[29]QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207.
[30]CHAUHAN H, KHURANA N, AGARWAL P, et al. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress[J]. Molecular Genetics and Genomics, 2011, 286(2): 171-187.
[31]CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology, 2007, 143(1): 251-262.
[32]VOLKOV R A, PANCHUK I I, MULLINEAUX P M, et al. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis[J]. Plant Molecular Biology, 2006, 61(4/5): 733-746.
[33]ZHANG X, HU Y H, JIANG C H, et al. Isolation of the Chinese rose sHSP gene promoter and its differential regulation analysis in transgenic Arabidopsis plants[J]. Molecular Biology Reports, 2012, 39(2): 1145-1151.
[34]NAVARRE C, SALLETS A, GAUTHY E, et al. Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology[J]. Transgenic Research, 2011, 20(4): 799-810.
[35]BALER R, ZOU J, VOELLMY R. Evidence for a role of HSP70 in the regulation of the heat shock response in mammalian cells[J]. Cell Stress Chap, 1996, 1(1): 33-39.
[36]YAMADA K, FUKAO Y, HAYASHI M, et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2007, 282(52): 37794-37804.
[37]NISHIZAWA-YOKOI A, TAINAKA H, YOSHIDA E, et al. The 26S proteasome function and hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress[J]. Plant and Cell Physiology, 2010, 51(3): 486-496.
[38]HSU S F, LAI H C, JINN T L. Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis[J]. Plant Physiology, 2010, 153(2): 773-784.
[39]WANG Q M, TU X J, ZHANG J H, et al. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis[J]. Molecular Biology Reports, 2013, 40(3): 2679-2688.
[40]WU Q Y, LIN J, LIU J Z, et al. Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato[J]. Plant Biotechnology Journal, 2012, 10(8): 945-955.
[41]CHEN H, HWANG J E, LIM C J, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochemical & Biophysical Research Communications, 2010, 401(2): 238-244.
[42]TODAKA D, NAKASHIMA K, SHINOZAKI K, et al. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice[J]. Rice, 2012, 5(1)6-15.
[43]HORWITZ J. Alpha-crystallin can function as a molecular chaperone [J]. Proc. Natl. Acad. Sci. USA, 1992, 89: 10449-10453.
[44]CHENG M Y, HARTL F U, MARTIN J, et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria[J]. Nature, 1989,337: 620-625.
[45]SUN W, VAN M M, VERBRUGGEN N. Small heat shock proteins and stress tolerance in plants[J]. Biochemica et Biophysica Acta(BBA):Structure and Expression, 2002, 1577(1): 1-9.
[46]WELCH W J. Mammalian stress response: cell physiology, structure function of stress proteins and implications for medicine and disease[J]. Physiological Review, 1992, 72(4): 1063-1081.
[47]RASSOW J, VOOS W, PFANNER N. Partner proteins determine multiple functions of HSP70[J]. Trends in Cell Biology, 1995, 5(5): 207-212.
[48]LEE U, WIE C, ESCOBAR M, et al. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system[J]. Plant Cell, 2005, 17(2): 559-571.
[49]YANG J Y, SUN Y, SUN A Q, et al. The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato[J]. Plant Molecular Biology, 2006, 62(3): 385-395.
[50]GULLI M, CORRADI M, RAMPINO P, et al. Four members of the HSP101 gene family are differently regulated in Triticum durum Desf.[J]. Febs Letters, 2007, 581(25): 4841-4849.
[51]EYLES S J, GIERASCH L M. Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(7): 2727-2728.
[52]BASHA E, FRIEDRICH K L, VIERLING E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity[J]. Journal of Biological Chemistry, 2006, 281(52): 39943-39952.
[53]WATERS E R, AEVERMANN B D, SANDERS-REED Z. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns[J]. Cell Stress & Chaperones, 2008, 13(2): 127-142.
[54]CHA J Y, ERMAWATI N, JUNG M H, et al. Characterization of orchardgrass p23, a flowering plant Hsp90 cohort protein[J]. Cell Stress & Chaperones, 2009, 14(3): 233-243.
[55]DUNCAN R F. Inhibition of Hsp90 function delays and impairs recovery from heat shock[J]. Febs Journal, 2005, 272(20): 5244-5256.
[56]LURIE S, KLEIN J D, FALLIK E. Cross protection of one stress by another[C]// CHERRY J H. Biochemical and cellular mechanisms of stress tolerance of plants. Berlin: Springer Verlag , 1994,86: 201-212.
[57]PUCCIARIELLO C, BANTI V, PERATA P. ROS signaling as common element in low oxygen and heat stresses[J]. Plant Physiology & Biochemistry, 2012, 59(Supp. 1): 3-10.
[58]BANEYX F, BERTSCH U, KALBACH C E, et al. Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60 [J]. J. Biol. Chem., 1995, 270(18): 10695-10702.
[59]GAO C Q, JIANG B, WANG Y C, et al. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast[J]. Molecular Biology Reports, 2012, 39(4): 4889-4897.
[60]BUCHNER O, KARADAR M, BAUER I, et al. A novel system for in situ determination of heat tolerance of plants: first results on alpine dwarf shrubs[J]. Plant Methods, 2013, 9(1)7-20.
[61]SILVA E N, VIEIRA S A, RIBEIRO R V, et al. Contrasting physiological responses of Jatropha curcas plants to single and combined stresses of salinity and heat[J]. Journal of Plant Growth Regulation, 2013, 32(1): 159-169.
[62]MITTLER R. Abiotic stress, the field environment and stress combination[J]. Trends in Plant Science, 2006, 11(1): 15-19.
[63]RIZHSKY L, LIANG H J, MITTLER R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3): 1143-1151.
[64]RAMPINO P, MITA G, FASANO P, et al. Novel durum wheat genes up-regulated in response to a combination of heat and drought stress[J]. Plant Physiology & Biochemistry, 2012, 56: 72-78.
[65]GRIGOROVA B, VASEVA I I, DEMIREVSKA K, et al. Expression of selected heat shock proteins after individually applied and combined drought and heat stress[J]. Acta Physiologiae Plantarum, 2011, 33(5): 2041-2049.
[66]NIETO-SOTELO J, MARTINEZ L M, PONCE G, et al. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth[J]. Plant Cell, 2002, 14(7): 1621-1633.
[67]SULEMAN P, REDHA A, AFZAL M, et al. Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius (Engl.)[J]. Acta Physiologiae Plantarum, 2013, 35(4): 1223-1231.
[68]RIKHVANOV E G, GAMBURG K Z, VARAKINA N N, et al. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture[J]. Plant Journal, 2007, 52(4): 763-778.
[69]CHARNG Y Y, LIU H C, LIU N Y, et al. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation[J]. Plant Physiology, 2006, 140(4): 1297-1305.
[70]PARK H S, JEONG W J, KIM E, et al. Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas[J]. Marine Biotechnology, 2012, 14(3): 332-342.
[71]CHAUHAN H, KHURANA N, NIJHAVAN A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant Cell and Environment, 2012, 35(11): 1912-1931.
[72]MONTERO-BARRIENTOS M, HERMOSA R, CARDOZA R E, et al. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses[J]. Journal of Plant Physiology, 2010, 167(8): 659-665.
[73]HORVATH I, GLATZ A, NAKAMOTO H, et al. Heat shock response in photosynthetic organisms: membrane and lipid connections[J]. Progress in Lipid Research, 2012, 51(3): 208-220.
[74]WU H C, HSU S F, LUO D L, et al. Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings[J]. Journal of Experimental Botany, 2010, 61(10): 2843-2852.
[75]SAIDI Y, FINKA A, MURISET M, et al. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane[J]. Plant Cell, 2009, 21(9): 2829-2843.
[76]GUYOT S, FERRET E, GERVAIS P. Responses of Saccharomyces cerevisiae to thermal stress[J]. Biotechnology and Bioengineering, 2005, 92(4): 403-409.
[77]MULTHOFF G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance[J]. Methods, 2007, 43(3): 229-237.
[78]HORVATH I, MULTHOFF G, SONNLEITNER A, et al. Membrane-associated stress proteins: more than simply chaperones[J]. Biochimica et BiophysicaI Acta-Biomembranes, 2008, 1778(7/8): 1653-1664.

相似文献/References:

[1]张朝阳,许桂芳.两种地被植物的耐热性生理特性研究[J].西北林学院学报,2009,24(01):49.
 ZHANG Zhaoyang,XU Guifang.Physiological Characteristics of Heat Tolerance in Two Ground Covering Plants[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2009,24(06):49.
[2]李亚藏,梁彦兰,王庆成. 铅对山梨和山荆子光合作用和叶绿素荧光特性的影响[J].西北林学院学报,2012,27(05):21.
 LI Ya-cang,LIANG Yan-lan,WANG Qing-cheng. Influence of Pb on Photosynthesis and Chlorophyll Fluorescence Characteristics in Pyrus ussuriensis and Malus baccata [J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2012,27(06):21.
[3]张小咏,李佳,杨艳昭,等. 基于SWAT模型的长江源区径流模拟[J].西北林学院学报,2012,27(05):38.
 ZHANG Xiao-yong,LI Jia,YANG Yan-zhao,et al. Runoff Simulation of the Catchment of the Headwaters of the Yangtze River Based on SWAT Model[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2012,27(06):38.
[4]杨红旗,陈广辉,王金林. PVAc改性酚醛树脂制备铝木复合材料研究[J].西北林学院学报,2013,28(01):170.[doi:10.3969/j.issn.1001-7461.2013.01.34]
 YANG Hong-qi,CHEN Guang-hui,WANG Jin-lin. PF Adhesive Modified by PVAc for Manufacturing Technology of Decorative Fiberboard with Aluminum Foils[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):170.[doi:10.3969/j.issn.1001-7461.2013.01.34]
[5]江涛,李秀荣,谢延军,等. 微波预处理对巨尾桉木材渗透性的影响[J].西北林学院学报,2013,28(01):174.[doi:10.3969/j.issn.1001-7461.2013.01.35]
 JIANG Tao,LI Xiu-rong,XIE Yan-jun,et al. Effects of Microwave Pretreatment on the Permeability of Eucalyptus grandis×Eucalyptus urophylla[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):174.[doi:10.3969/j.issn.1001-7461.2013.01.35]
[6]牛晓霆,王逢瑚,曹新民. 明清家具匠师原木下料的工艺原则及措施[J].西北林学院学报,2013,28(01):178.[doi:10.3969/j.issn.1001-7461.2013.01.36]
 NIU Xiao-ting,WANG Feng-hu,CAO Xin-min. Techniques and Principles of Log Cuttings of Furniture Makers in Ming and Qing Dynasties[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):178.[doi:10.3969/j.issn.1001-7461.2013.01.36]
[7]吕金阳,覃卓凯,舒辉,等. 银杉木材构造美学价值[J].西北林学院学报,2013,28(01):183.[doi:10.3969/j.issn.1001-7461.2013.01.37]
 LV Jin-yang,QIN Zhuo-kai,SHU Hui,et al. Esthetical Values in Wood Structure of Cathaya argyrophylla[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):183.[doi:10.3969/j.issn.1001-7461.2013.01.37]
[8]杨艳红,张海敏,孙景荣. 基于传统文化视角的现代家具设计探析[J].西北林学院学报,2013,28(01):188.[doi:10.3969/j.issn.1001-7461.2013.01.38]
 YANG Yan-hong,ZHANG Hai-min,SUN Jing-rong. Study of Modern Furniture Design Based on Traditional Culture[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):188.[doi:10.3969/j.issn.1001-7461.2013.01.38]
[9]黄圣游,叶喜. 新中式家具“中式”传统的界定[J].西北林学院学报,2013,28(01):192.[doi:10.3969/j.issn.1001-7461.2013.01.39]
 HUANG Sheng-You,YE Xi. Definition of Traditional Element in New Chinese Style Furniture[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):192.[doi:10.3969/j.issn.1001-7461.2013.01.39]
[10]韩维生,赵明磊,王宏斌. 基于阈限理论的设计尺度体系[J].西北林学院学报,2013,28(01):197.[doi:10.3969/j.issn.1001-7461.2013.01.40]
 HAN Wei-sheng,ZHAO Ming-lei,WANG Hong-bin. Design Scale System Based on Threshold Theory[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(06):197.[doi:10.3969/j.issn.1001-7461.2013.01.40]
[11]蒋瑶,陈文波,黄江中,等. 高温胁迫对野生湖北百合生理指标的影响[J].西北林学院学报,2019,34(1):62.[doi:10.3969/j.issn.1001-7461.2019.01.09]
 JIANG Yao,CHEN Wen-bo,HUANG Jiang-zhong,et al. Effects of High Temperature Stress on Physiological Indexes of Wild Lilium henryi[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2019,34(06):62.[doi:10.3969/j.issn.1001-7461.2019.01.09]
[12]凌瑞,游乐,吴春梅,等. 外源水杨酸对2个绣球品种耐热性影响的研究[J].西北林学院学报,2021,36(6):72.[doi:10.3969/j.issn.1001-7461.2021.06.10]
 LING Rui,YOU Le,WU Chun-mei,et al. Effects of Exogenous Salicylic Acid on Heat-tolerance of Two Hydrangea Cultivars[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2021,36(06):72.[doi:10.3969/j.issn.1001-7461.2021.06.10]

备注/Memo

备注/Memo:
 收稿日期:2013-10-11修回日期:2014-01-31
基金项目:江苏省农业自主创新资金项目[CX12(2043)];江苏省高校优势学科建设工程资助项目(PAPD)。
作者简介:王涛,男,在读硕士,研究方向:海棠耐热性。E-mail:1024176283@qq.com
*通信作者:谢寅峰,男,博士,教授,研究方向:植物生理生化。E-mail:xxyyff@njfu.com.cn
更新日期/Last Update: