[1]陈佳琦,赵鹏祥,祁宁,等. 基于BP神经网络的油松人工林树高模型研究[J].西北林学院学报,2020,35(1):212-217.[doi:10.3969/j.issn.1001-7461.2020.01.32]
 CHEN Jia-qi,ZHAO Peng-xiang,QI Ning,et al. Establishment of Tree Height Model of Pinus tabuliformis Plantation Based on BP Neural Network[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2020,35(1):212-217.[doi:10.3969/j.issn.1001-7461.2020.01.32]
点击复制

 基于BP神经网络的油松人工林树高模型研究()
分享到:

《西北林学院学报》[ISSN:1001-7461/CN:61-1202/S]

卷:
第35卷
期数:
2020年第1期
页码:
212-217
栏目:
出版日期:
2020-01-31

文章信息/Info

Title:
 Establishment of Tree Height Model of Pinus tabuliformis Plantation Based on BP Neural Network
文章编号:
1001-7461(2020)01-0212-06
作者:
 陈佳琦赵鹏祥祁宁李卫忠*
 (西北农林科技大学 林学院,陕西 杨陵 712100)
Author(s):
 CHEN Jia-qiZHAO Peng-xiangQI NingLI Wei-zhong*
 (College of Forestry,Northwest A&F University,Yangling 712100,Shaanxi,China)
关键词:
 BP神经网络树高模型黄龙山油松人工林
Keywords:
 BP neural network tree height model Huanglong Mountian Pinus tabuliformis plantation
分类号:
S791.254
DOI:
10.3969/j.issn.1001-7461.2020.01.32
文献标志码:
A
摘要:
 通过分析比较不同算法以及不同输入层因子,构建出最佳的黄龙山区油松人工林树高预测BP神经网络模型。以陕西省延安市黄龙县44块油松人工林样地实测数据为数据源,通过对6种BP神经网络的训练方法进行训练,经过反复筛选找出最优模型并与传统胸径-树高模型作比较;最后将BP神经网络中的输入因子从2个增加到6个后,经过反复训练筛选出最优模型与2因子的BP神经网络模型作比较。结果表明:1)贝叶斯归一化(BR)算法在6种算法中表现最佳,R2和MSE分别为0.963 0和1.168;2)不同隐含层节点数的选取会对BP神经网络模型的建立产生一定的影响,BP神经网络模型的决定系数(R2)随着隐含层节点数的增加呈现先上升后下降的趋势;均方误差(MSE)呈现先下降后上升的趋势,两者都在节点数为10时有极值,此时的模型为最优模型;3)当输入因子为胸径和优势树高时,油松人工林的最优模型结构为(输入层节点数:隐含层节点数:输出层节点数为2∶10∶1),此时BP神经网络模型对树高预测的决定系数(R2)和均方误差(MSE)分别为0.761 0和1.984 7;当输入因子为胸径、优势树高、林分密度、竞争指数、坡度和坡向时,最优模型结构为6∶10∶1,此时BP神经网络模型对树高预测的决定系数(R2)和均方误差(MSE)分别为0.844 7和1.955 7。由此得出,在建立油松人工林树高BP神经网络模型方面优化类算法要优于启发式下降算法;BP神经网络模型与传统模型相比,BP神经网络模型不需要目标方程结构,并且模拟和预测的精度均要优于传统模型;在原有BP神经网络模型的基础上再引入林分密度、竞争指数、坡度、坡向这些输入因子后所得到的新的BP神经网络模型对树高模型的建立和预测要优于原有BP神经网络模型。
Abstract:
 We established the optimal tree height prediction model of Pinus tabuliformis based on BP (back propagation) neural network by analyzing and comparing different algorithms and different input layer factors.We trained the data by six kinds of BP neural network algorithms based on measured data of 44 plots of P.tabuliformis plantation in Huanglong County,Yanan City,Shaanxi Province,to select the optimal model and to compare with the traditional models.After increasing the number of input factors of BP neural network from 2 to 6,we compared these 2 models.1) BR algorithm performed the best among 6 algorithms,the coefficient of determination (R2) and mean square error (MSE) were 0.9630 and 1.168,respectively.2) Different hidden layer nodes will affect the accuracy of BP neural network models.As hidden layer nodes increased,the coefficient of determination (R2) increased first and then decreased,the mean square error (MSE) decreased first and then increased.Both of them presented extreme values when hidden layer nodes equal to 10,and the model was the optimal one.3) When tree height and DBH were used as input factors,the optimal structure of P.tabuliformis plantation was input factor nodes∶hidden layer nodes∶output factor nodes=2∶10∶1,and the determinant coefficient (R2) and mean square error (MSE) of BP neural network model for tree height prediction were 0.7610 and 1.9847,respectively.When tree height,DBH,stand density,competition index,slope gradient and slope direction were used as input factors,the optimal structure of P.tabuliformis plantation was 6∶10∶1 and the determinant coefficient (R2) and mean square error (MSE) of BP neural network model for tree height prediction were 0.844 7 and 1.955 7,respectively.The optimization algorithm was superior to the heuristic descent algorithm in establishing BP neural network model of tree height of P.tabuliformis plantation.Compared with the traditional model,the BP neural network model did not need the structure of objective equation,and the accuracy of simulation and prediction was better than the traditional model.On the basis of the original BP neural network model,the new BP neural network model obtained by introducing the input factors of stand density,competition index,slope and aspect was superior to the original BP neural network model in establishing and predicting tree height.

相似文献/References:

[1]李亚藏,梁彦兰,王庆成. 铅对山梨和山荆子光合作用和叶绿素荧光特性的影响[J].西北林学院学报,2012,27(05):21.
 LI Ya-cang,LIANG Yan-lan,WANG Qing-cheng. Influence of Pb on Photosynthesis and Chlorophyll Fluorescence Characteristics in Pyrus ussuriensis and Malus baccata [J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2012,27(1):21.
[2]张小咏,李佳,杨艳昭,等. 基于SWAT模型的长江源区径流模拟[J].西北林学院学报,2012,27(05):38.
 ZHANG Xiao-yong,LI Jia,YANG Yan-zhao,et al. Runoff Simulation of the Catchment of the Headwaters of the Yangtze River Based on SWAT Model[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2012,27(1):38.
[3]杨红旗,陈广辉,王金林. PVAc改性酚醛树脂制备铝木复合材料研究[J].西北林学院学报,2013,28(01):170.[doi:10.3969/j.issn.1001-7461.2013.01.34]
 YANG Hong-qi,CHEN Guang-hui,WANG Jin-lin. PF Adhesive Modified by PVAc for Manufacturing Technology of Decorative Fiberboard with Aluminum Foils[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):170.[doi:10.3969/j.issn.1001-7461.2013.01.34]
[4]江涛,李秀荣,谢延军,等. 微波预处理对巨尾桉木材渗透性的影响[J].西北林学院学报,2013,28(01):174.[doi:10.3969/j.issn.1001-7461.2013.01.35]
 JIANG Tao,LI Xiu-rong,XIE Yan-jun,et al. Effects of Microwave Pretreatment on the Permeability of Eucalyptus grandis×Eucalyptus urophylla[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):174.[doi:10.3969/j.issn.1001-7461.2013.01.35]
[5]牛晓霆,王逢瑚,曹新民. 明清家具匠师原木下料的工艺原则及措施[J].西北林学院学报,2013,28(01):178.[doi:10.3969/j.issn.1001-7461.2013.01.36]
 NIU Xiao-ting,WANG Feng-hu,CAO Xin-min. Techniques and Principles of Log Cuttings of Furniture Makers in Ming and Qing Dynasties[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):178.[doi:10.3969/j.issn.1001-7461.2013.01.36]
[6]吕金阳,覃卓凯,舒辉,等. 银杉木材构造美学价值[J].西北林学院学报,2013,28(01):183.[doi:10.3969/j.issn.1001-7461.2013.01.37]
 LV Jin-yang,QIN Zhuo-kai,SHU Hui,et al. Esthetical Values in Wood Structure of Cathaya argyrophylla[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):183.[doi:10.3969/j.issn.1001-7461.2013.01.37]
[7]杨艳红,张海敏,孙景荣. 基于传统文化视角的现代家具设计探析[J].西北林学院学报,2013,28(01):188.[doi:10.3969/j.issn.1001-7461.2013.01.38]
 YANG Yan-hong,ZHANG Hai-min,SUN Jing-rong. Study of Modern Furniture Design Based on Traditional Culture[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):188.[doi:10.3969/j.issn.1001-7461.2013.01.38]
[8]黄圣游,叶喜. 新中式家具“中式”传统的界定[J].西北林学院学报,2013,28(01):192.[doi:10.3969/j.issn.1001-7461.2013.01.39]
 HUANG Sheng-You,YE Xi. Definition of Traditional Element in New Chinese Style Furniture[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):192.[doi:10.3969/j.issn.1001-7461.2013.01.39]
[9]韩维生,赵明磊,王宏斌. 基于阈限理论的设计尺度体系[J].西北林学院学报,2013,28(01):197.[doi:10.3969/j.issn.1001-7461.2013.01.40]
 HAN Wei-sheng,ZHAO Ming-lei,WANG Hong-bin. Design Scale System Based on Threshold Theory[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):197.[doi:10.3969/j.issn.1001-7461.2013.01.40]
[10]宋杰,侯建军,申黎明. 按摩椅按摩头包覆层对按摩舒适性的影响[J].西北林学院学报,2013,28(01):202.[doi:10.3969/j.issn.1001-7461.2013.01.41]
 SONG Jie,HOU Jian-jun,SHEN Li-ming. Influence of Massager Coat Layer of Massage Chairs on the Degree of Comfort[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2013,28(1):202.[doi:10.3969/j.issn.1001-7461.2013.01.41]
[11]赖小龙,于文华,赵燕东,等. 基于多传感器数据融合的早期林火识别[J].西北林学院学报,2015,30(04):178.[doi:doi:10.3969/j.issn.1001-7461.2015.04.28]
 LAI Xiao-long,YU Wen-hua,ZHAO Yan-dong,et al. Early Forest Fire Detection Algorithm Based on Multi-sensor Data Fusion[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2015,30(1):178.[doi:doi:10.3969/j.issn.1001-7461.2015.04.28]
[12]徐云栋,舒清态*,李圣娇,等. 基于优化BP神经网络的香格里拉高山松蓄积量模型研究[J].西北林学院学报,2015,30(06):190.[doi:doi:10.3969/j.issn.1001-7461.2015.06.35]
 XU Yun-dong,SHU Qing-tai*,LI Sheng-jiao,et al. Models of Pinus densata Stock Volume in Shangri-La County Based on Optimized BP Neural Networks[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2015,30(1):190.[doi:doi:10.3969/j.issn.1001-7461.2015.06.35]
[13]胥喆,舒清态*,杨凯博,等. 基于非成像高光谱的高山松叶绿素估算模型研究[J].西北林学院学报,2017,32(2):73.[doi:10.3969/j.issn.1001-7461.2017.02.12]
 XU Zhe,SHU Qing-tai*,YANG Kai-bo,et al. Estimation Models of Chlorophyll in Pinus densata Based on Non-imaging Hyperspectrum[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2017,32(1):73.[doi:10.3969/j.issn.1001-7461.2017.02.12]
[14]王宇航,岳德鹏*,于强,等. 基于EMD的磴口县地下水埋深动态预测[J].西北林学院学报,2017,32(6):53.[doi:10.3969/j.issn.1001-7461.2017.06.08]
 WANG Yu-hang,YUE De-peng*,YU Qiang,et al. Dynamic Prediction of Groundwater Depth in Dengkou County Based on EMD[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2017,32(1):53.[doi:10.3969/j.issn.1001-7461.2017.06.08]
[15]余蛟洋,常庆瑞*,由明明,等. 基于高光谱和BP神经网络模型苹果叶片SPAD值遥感估算[J].西北林学院学报,2018,33(2):156.[doi:10.3969/j.issn.1001-7461.2018.02.26]
 YU Jiao-yang,CHANG Qing-rui*,YOU Ming-ming,et al. Estimation of Apple leaf SPAD Value Based on Hyperspectrum and BP Neural Network[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2018,33(1):156.[doi:10.3969/j.issn.1001-7461.2018.02.26]
[16]吴文强,常庆瑞*,陈涛,等. 基于PCA-BP神经网络算法桃树叶片SPAD值高光谱估算[J].西北林学院学报,2019,34(5):134.[doi:10.3969/j.issn.1001-7461.2019.05.21]
 WU Wen-qiang,CHANG Qing-rui*,CHEN Tao,et al. Hyperspectral Estimation of Peach Leaf SPAD Value Based on PCA-BP Neural Network Algorithm[J].JOURNAL OF NORTHWEST FORESTRY UNIVERSITY,2019,34(1):134.[doi:10.3969/j.issn.1001-7461.2019.05.21]

备注/Memo

备注/Memo:
 收稿日期:2019-03-03修回日期:2019-07-03
基金项目:国家重点研究发展计划项目(2016YFD0600203);陕西省林业重点项目(SHLY-2018-02)。
作者简介:陈佳琦,男,硕士在读,研究方向:森林可持续经营与评价。E-mail:jiaqi_chen_nwafu@163.com
*通信作者:李卫忠,男,教授,博士生导师,研究方向:森林可持续经营与评价。E-mail:liweizhong@nwsuaf.edu.cn
更新日期/Last Update: