几种木腐菌漆酶活性的研究◎

杨启青1,曹支敏1,胡景江2

(1.西北农林科技大学 林学院 陕西 杨陵 712100 2.西北农林科技大学 生命科学学院 陕西 杨陵 712100)

摘 要 对 18 种木腐菌胞外漆酶活性的测定结果表明 腐木生侧耳的漆酶活力最高 ,为 605.0 $u \cdot mL^{-1}$,其次是多毛拴菌和云芝 ,其漆酶活力分别为 440.0 $u \cdot mL^{-1}$ 和 400.0 $u \cdot mL^{-1}$,其余菌株活性低于 336.7 $u \cdot mL^{-1}$ 。 腐木生侧耳漆酶作用的最适 pH 值为 4.6 , Cu^{2+} 、 Mg^{2+} 、 Na^+ 、 Co^{2+} 对漆酶活力有激活作用 Ag^+ 、 K^+ 、 Ca^{2+} 、 Hg^{2+} 、 Fe^{2+} 、 Cl^- 和 Zn^{2+} 对其漆酶活力有明显抑制作用。

关键词:大型真菌;漆酶活力;腐木生侧耳

中图分类号 :Q949.32 文献标识码 :A 文章编号 :1001-7461(2003)02-0058-03

Study on Laccase Activities of Wood-rot Fungi

YANG Qi-qing¹, CAO Zhi-min¹, HU Jing-jiang²

(1. College of Forestry, NW Sci-Tech Univ. of Agr. and For., Yangling, Shaanxi, 712100, China; 2. College of Life Sciences, NW Sci-Tech Univ. of Agr. and For., Yangling, Shaanxi, 712100, China)

Abstract in this paper, the laccase activities of 18 wood-rot fungi were studied. The results showed that the maxmum activity of laccase of *Pleurotus lignetilis* was 605.0 u·mL⁻¹, then the maxmum activity of laccase of *Trametes trogii* and *Corilus versicolar* were 440.0 u·mL⁻¹ and 400.0 u·mL⁻¹. Different pH values and inorganic ions had different effects on laccase activities of *Pleurotus lignetilis*. The optimum pH value of laccase of *Pleurotus lignetilis* was 4.6, Cu²⁺, Mg²⁺, Na⁺, Co²⁺ increased laccase activities whereas Ag⁺, K⁺, Ca²⁺, Hg²⁺, Fe²⁺, Cl⁻ and Zn²⁺ significantly inhibited it.

Kev words: wood-rot fungi; laccase activity; Pleurotus lignetilis

漆酶是一种含铜的多酚氧化酶,广泛地存在于担子菌、半知菌和子囊菌中。其中最主要的是担子菌中的白腐菌,因其具有降解木质素,可与有毒的酚类作用,对苯氧基类除草剂、石油工业废物等造成环境污染的物质有去毒作用,使之在制浆造纸工业,尤其是纸浆生物漂白方面得到重要的研究和应用,在环保方面具有很大的应用潜力。

国外关于漆酶的研究涉及的真菌菌种范围很广 但多集中在黄孢原毛平革菌 ^{1]}和杂色云芝 ^{2]}方面的研究 国内周金燕 ^{3]}、秦小琼 ^{4]}、王宜磊 ^{5~7]}等曾对真菌漆酶进行了研究。本文对采自太白山的 18 种木腐菌进行了漆酶活力的测定 ,并对应用较广的漆酶的一些基本性质进行了研究 ,其目的是筛选出对木质素分解能力较强的菌种 .为木腐菌的综合

利用提供理论基础。

1 材料与方法

1.1 菌株来源

2002年9月在太白山采集木腐菌标本,经分离纯化后得到18种菌株的纯菌丝体(表1)。

1.2 方法

1.2.1 组织分离及纯化 配制综合马铃薯培养基 (马铃薯 20% ,葡萄糖 2% ,琼脂 2% ,KH $_2$ PO $_4$ 0.3% ,MgSO $_4$ 0.15% 维生素 B_1 10 mg),在灭菌后 的固体培养基上接入经表面消毒的菌体组织或基物组织 25% 恒温培养。

1.2.2 接种母液制备 配制液体培养基(上述培养基大掉琼脂,加入 0.5%的酵母膏,灭菌),250 mL

① 吸稿日期 2002-09-12 基金项目 高等学校全国优秀博士学位论文作者专项基金项目"秦岭大型真菌物种多样性及其生态功能研究"资助(200057) 作者简介 杨启青(1968-),女 清海湟中人 工程师,在职研究生,研究方向为森林病理。

三角瓶中接入 50 mL液体培养基 ,用灭菌打孔器接入 10 cm 7 日龄平板菌种 3 片 ,30℃ ,110 r·min⁻¹恒

温振荡培养 5 d。固体培养基和液体培养基经高温灭菌后 pH 值均为 6。

表 1 供试菌株及来源

Table 1 The tested isolates and their origons

菌 株	采集地	海拔/m	寄主
粉迷孔菌 Abortiporus biennis (Bull. Fr. Sing	放羊寺	3 000	针叶树朽木
云芝 Corilus versicolar(L. Fr.)Qeul.	上白云	1 300	阔叶树朽木
拟迷孔菌 Daedaleopsis sp.	大殿上	2 350	桦树倒木
大孔菌 Favolus sp.	骆驼寺上	1 600	阔叶树活立木
树舌 Ganoderma applanatum (Pers.)Pat	二道梁	1 800	鹅耳栎枯立木
半胶孔菌 Gloeoporus sp.	下白云	1 550	阔叶树枯立木
红锈刺革菌 Hymenochaete mougeotii (Fr.)Cke	明星寺	2 830	杜鹃枯立木
截头炭球菌 Hypoxylon anuulatum (Schw.)Mont	大殿上	2 350	桦树倒木
皱孔菌 Merulius sp.	大殿下	2 000	阔叶树倒木
毛边刺皮菌 <i>Odontia fimbriata</i> Pers. ex Fr.	下白云	1 550	阔叶树枯枝
刺皮菌 Odontia sp.	骆驼寺上	1 600	阔叶树倒木
白环粘奥德蘑 Oudemansiella mucida (Schrad. :Fr.)Hohnel	下白云	1 550	栎树活立木
宽褶奥德蘑 Oudemansiella platyphylla (Pers. :Fr.)Moser	下白云	1 550	阔叶树倒木
腐木生侧耳 Pleurotus lignetilis Fr.	大殿上	2 350	阔叶树倒木
卧孔菌 Poria sp.	骆驼寺上	1 600	阔叶树倒木
轮纹硬革 Stereum fasciatum Schw	大殿下	2 000	桦树倒木
拴菌 Trametes sp.	大殿下	2 000	阔叶树朽木
多毛拴菌 Trametes trogii Berkeley.	骆驼寺下	1 500	阔叶树倒木

- 1.2.3 **胞**娇酶**烟**酶液的制备 250 mL 三角瓶中装液体培养基 50 mL ,接入 2 mL 接种母液 ,每菌种 3 个重复 ,110 r·min^{-1} ,30℃ 恒温振荡培养 ,第 5、8 d 各取样 1 次 $4\,000\,\text{r·min}^{-1}$ 离心 15 min ,上清液即为粗酶液 ,冰箱保存备用。
- 1.2.4 漆酶活性的测定 试管中加入 3.36 mmol·L⁻¹邻联甲苯胺 0.5 mL, 0.1 mol·L⁻¹pH4.6 的醋酸 缓冲液 3.5 mL 和粗酶液 0.1 mL, 25℃ 保温 30 min ,以煮死酶液为对照 ,测定 600 nm 处光密度值 , 酶活力以样品与底物反应 30 min 后光密度值的改变值表示 ,以每分钟引起 0.01 吸光度值的增加所需的酶液量为一个酶活力单位($u\cdot mL^{-1}$)。每菌种 3个重复。
- 1.2.5 漆酶性质分析 选择其中漆酶活性较高的 菌株 测定其在不同 pH 值和化学试剂条件下的漆酶活力 测定按上述方法进行。不同 pH 配制方法:

用 0.2 mol·L⁻¹的醋酸和 0.2 mol·L⁻¹的醋酸钠配制成 pH 值为 3.0、3.6、4.0、4.2、4.6、4.8、5.0、5.2、5.6、6、0、7.0 和 8.0 的醋酸缓冲液。

2 结果与分析

2.1 不同菌种漆酶活性的差异

由表 2 可以看出,在相同的条件下,不同菌株间的漆酶活力有较大差异。在 18 株木腐菌中,表现出较高漆酶活性的是腐木生侧耳、多毛拴菌、云芝、拴菌、轮纹硬革菌、刺皮菌、半胶孔菌、截头炭球菌、大孔菌和树舌,其中腐木生侧耳的酶活性最高。其余菌株酶活由高到低依次为皱孔菌、白环粘奥德蘑、宽褶奥德蘑、卧孔菌、红锈刺革菌、毛边刺皮菌和粉迷孔菌。拟迷孔菌没有测到酶活性。

腐木生侧耳的酶活性最高 ,因此选择腐木生侧耳 8 d 的粗酶液作为酶性质分析的材料。

表 2 真菌的漆酶活力

Table 2 The laccase activities of macrofungi

	漆酶活力/u·mL⁻¹		- 菌 种 -	漆酶活力	∕u·mL ⁻¹	菌种	漆酶活力	∕u·mL ⁻¹
西 7年	5 d	8 d	四 作	5 d 8 d	西 作	5 d	8 d	
白环粘奥德蘑	175.0	28.3	腐木生侧耳	185.0	605.0	云 芝	180.0	400.0
拟迷孔菌	0.0	0.0	毛边刺皮菌	8.3	91.7	树 舌	121.7	136.7
宽褶奥德蘑	96.6	41.7	粉迷孔菌	10.0	16.7	刺皮菌	246.7	38.3
轮纹硬革菌	111.7	246.7	半胶孔菌	56.7	233.3	卧孔菌	25.0	10.0
红绣刺革菌	30.0	3.3	多毛拴菌	440.0	251.7	拴 菌	336.7	85.0
截头炭球菌	151.7	188.3	皱孔菌	93.3	120.0	大孔菌	118.3	186.7

2.2 pH 值对腐木生侧耳漆酶活力的影响

由表 3 看出,在醋酸盐缓冲液中,腐木生侧耳的 漆酶酶解 pH 值范围较广,在 $pH3.0\sim7.0$ 之间均有 较高的活性,但最适酶解 pH 值为 4.6。

表 3 pH 值对漆酶活力的影响

Table 3 Effect of pH value on laccase activity

рН	漆酶活力/u·mL-1	рН	漆酶活力/u·mL ⁻¹
3.0	170.0	5.0	368.3
3.6	233.3	5.2	273.3
4.0	375.0	5.6	248.3
4.2	468.3	6.0	153.3
4.6	590.0	7.0	146.7
4.8	481.7	8.0	60.0

2.3 无机离子对酶活力的影响

由表 4 可以看出 ,当酶反应液内盐质量浓度为 1.5 mg/mL 时 Cu^{2+} 、 Mg^{2+} 、 Na^+ 、 Co^{2+} 对腐木生侧耳的漆酶有激活作用 , Ag^+ 、 K^+ 、 Ca^{2+} 、 Hg^{2+} 、 Fe^{2+} 、 Cl^- 和 Zn^{2+} 能明显抑制其漆酶活性。

表 4 无机离子对漆酶活力的影响

Table 4 Effect of inorganic ions on activities of laccase

	相对活力/%	试 剂	相对活力/%
对照力力多	以抗 100	KCl	34
$MgSO_4$	480	CaCl ₂	31
NaCl	23	HgCl ₂	39
$ZnSO_4$	18	CuSO ₄	452
Na_2SO_4	305	FeSO ₄	23
$AgNO_3$	0	CoCl ₂	512

3 小结

本研究的 18 个菌种中 17 种有一定的漆酶活力 但在相同的条件下不同菌种的漆酶活力有较大的差异。其中以腐木生侧耳酶活力为最高。同一种木腐菌在不同的 pH 条件下漆酶活力不同 pH ,像木生侧耳在 pH4.6 的缓冲液中漆酶活力最高。

本文仅对腐木生侧耳的漆酶性质进行了部分研究 不同菌种、不同底物、不同温度和不同培养条件 及通气量等的研究有待进一步进行。

参考文献:

- [1] Srinvasan C, Souza T M, Boominatathan K, et al. Demonstration of laccase in the white rot basidiomycete *Phanerochaele chrysosporium* BKM-F 1767[J]. Appl. Environ. Microbiol., 1995,61 (12) 4274-4277.
- [2] Brian P R, Frederick A. Effects of kraft pulp and lignin on Trametes versicolor carbon metabolism [J]. Appl. Environ. Microbiol., 1993 59(6):1855-1963.
- [3] 周金燕 , 张发群. 真菌产生的锰过氧化物酶和漆酶的研究[J]. 微生物学报 ,1993 ,33(5) 387-391.
- [4] 秦小琼 傅挺治 曹幼琴 等. 红栓菌胞外漆酶的诱导、纯化及部分性质研究 [1] 微生物学报 1996 36(5)360-366.
- [5] 王宜磊 朱陶. 漆酶高产菌株的筛选及产酶条件研究[J]. 生态 学杂志 2002 21(2)27-29.
- [6] 王宜磊 邓振旭. 彩绒革盖菌漆酶活性的初步研究[J]. 微生物 学杂志 ,1998 ,18(4):60-62.
- [7] 王宜磊. 侧耳液体培养特性及胞外酶活性研究[J]. 中国食用菌 2000,19(4)33-34.

" 西部林业生态环境建设 "专栏征稿启事

为了及时报道西部开发中的西部林业生态环境建设研究的新成果、新技术、新动态,加快西部林业生态建设的发展,我刊将从2003年第4期开始,设立"西部林业生态环境建设"专栏,刊登内容主要包括西部的林业生态、森林资源现状调查、林业工程建设、林业发展战略及生态环境安全、林业法规等。

欢迎投稿!